Express and HT TP with real world
examples
Postman

Going to the doctor

Doctors have a skill
They have acquired that skill over years
They provide service to other people who want to use their skill

Going to the doctor

To expose this life skill, they open a clinic

People who want to use their skill line up in a waiting room
One by one, the doctor meets with them

The doctor is single threaded

Going to the doctor

Clinic

Waiting area

How do people reach the doctors?
They get their address and navigate to it

Doctors cabin

Going to the doctor

Clinic

Waiting area

Once they reach there, they wait in the waiting area .
Until their time comes

Doctors cabin

Going to the doctor

Clinic

Waiting area

Doctor tends to them one by one

Doctors cabin

Going to the doctor

Clinic

Waiting area

Doctor can tell them to get a medicine in the middle
and meanwhile tend to other people

. Doctors cabin

Go get medicine from chemist

Going to the doctor

Clinic

Waiting area

You Come back and wait in the waiting room again

. Doctors cabin

Going to the doctor

You Come back and wait in the waiting room again

Clinic

Waiting area

Doctors cabin

Your logic Is like a doctor

Doctor logic

index.js > ...

1. function calculateSum(n) {

P Llet ans = 0;

3] for (let 1 = 1; i<=n; i++) {
4 ans = ans + 1;

5 }

6 return ans;

7 |}

8

9 let ans = calculateSum(10);

10 console.log(ans);

Your logic Is like a doctor

Doctor logic

index.js > ...

1. function calculateSum(n) {

P Llet ans = 0;

3] for (let 1 = 1; i<=n; i++) {
4 ans = ans + 1;

5 }

6 return ans;

7

8

Your relative using you like a patient let ans = calculateSum(10):
Relative doesn’t need to find your address, —9> :
console. log(ans);

They stay in the same house

Your logic Is like a doctor

Doctor logic

index.js > ...

1., function calculateSum(n) {

P Llet ans = 0;

3, for (let 1 = 1; i<=n; i++) {
But what if you want to expose this logic to the world? g ans = ans + 1;

5 }

6 return ans;

7}

8

9 let ans = calculateSum(10);

10 console.log(ans);

Your logic Is like a doctor

Doctor logic

index.js > ...

1., function calculateSum(n) {

2 let ans = 0;
But what if you want to expose this logic to the world? 3, for (let 1 = 1; i<=n; i++) {
This is where HTTP comes into the picture 4 ans = ans + i;
It lets you create a ~hostpital where people can 5)
Come and find you
6 return ans;
7}
8
9 let ans = calculateSum(10);
10 console.log(ans);

Your logic Is like a doctor

Doctor logic

index.js > ...

1., function calculateSum(n) {

Question - How do | expose my doctor functionality 2 LS G S _ = _ _
To other people? 3v for (let 1 =1; i<=n; 1++) {
How can they find me? g ans = ans + i;
5 }
Ans - By creating an HTTP Server 6 return ans;
7 '}
8
9 let ans = calculateSum(10);
10 console.log(ans);

Your logic Is like a doctor

Doctor logic

index.js > ...

1., function calculateSum(n) {

P Llet ans = 0;

Question - How do | create an HTTP Server? ST G LU L R S s LR
4 ans = ans + 1;

Ans - Express 5 }

6 return ans;
7}
8
9 let ans = calculateSum(10);
10 console.log(ans);

index.js > ...

1) function calculateSum(n) {
2 let ans = 0;

3, for (let i = 1; i<=n; i++) {
4 ans = ans + 1i;

5 }

6 return ans;

7| }

8

9 let ans = calculateSum(10);
10 console.log(ans);

Your logic Is like a doctor

Question - How do | create an HTTP Server?

Ans - Express

1l luunch

1 const express = require("express")
2

3 v function calculateSum(n) {

L. let ans = 0;

3. for (let 1 = 1; i<=n; i++) {

—_— e ans = ans + 1i;

| }

& return ans;

I

10

11 const app = express();

12

13, app.get("/", function(req, res) {
14 const n = reg.query.n;

15 const ans = calculateSum(n)
16 res.send(ans);

17 })

18

19 app.listen(3000);

Your logic Is like a doctor

Question - How do | create an HTTP Server?

Ans - Express

Exposing the doctors one functionality (kidney surgery, brain surgery)
Doctor could have multiple rooms inside their hospital, this is
one of them

1l IU\JI\QJJ

O 0O NO UL & WIN =

R
W N P

14
15
16
17
18
19

\'4

<

const express = require("express")

function calculateSum(n) {
let ans = 0;
for (let 1 = 1; i<=n; i1++) {
ans = ans + 1i;
}

return ans;

-

const app = express();

v app.get("/", function(req, res) {

const n = req.query.n;
const ans = calculateSum(n)
res.send(ans);

})

app.listen(3000);

Your logic Is like a doctor

Question - How do | create an HTTP Server?

Ans - Express

1l IU\JI\QJJ

const express = require("express")

v function calculateSum(n) {

let ans = 0;

for (let 1 = 1; i<=n; i1++) {
ans = ans + 1i;

}

return ans;

O 0O NO UL & WIN =
<

I
10
11 const app = express();
12
13, app.get("/", function(req, res) {
14 const n = reg.query.n;
15 const ans = calculateSum(n)
16 res.send(ans);
17 })
18

Deciding the address of the clinic 19 | app.listen(3000);

Your logic Is like a doctor

Question - How do | create an HTTP Server?

Ans - Express

Hospital

Doctor 1 Doctor 2

L) IU\»I\-]J

Index.|s > ...

1 const express = require("express"

const express = require("express")

v function calculateSum(n) {

let ans = 0;

for (let i = 1; i<=n; i++) {
ans = ans + 1i;

}

return ans;

v function calculateSum(a, b) {
return a + b;

}

const app = express();

O 00O NOULTL B WDN -
<

0O O U1 & WN
eyt

(BN
(&)

9v app.get("/", function(req, res) { 11 const app = express();
- b

10 const a = reg.query.a; 12
11 const b = reqg.query.b; 13, app.get("/", function(req, res) {
12 const ans = calculateSum(a, b) 14 const n = req.query.n:
. .n;
13 res.send(ans); 15 const ans = calculateSum(n)
14 }) 16 res.send(ans);
15 17 })
16 ' app.listen(3001);] 18

19 app.listen(3000);

Your logic is like a doctor

Question - How do | create an HTTP Server?

Ans - Express

JS index.js » ...
const express = require("express")
2

= - 9
How do patients reach it function calculateSum(n) {

let ans = 0;
for (let i = @3 i<n; i++) {

& > C QO localhost:3000/?2n=30 ans = ans + ij;
}

435 return ans;

}

const app = express();

app.get("/", function(req, res) {
const n = reqg.query.n;
const ans = calculateSum(n)
res.send(ans.toString());

}

app.listen(3000);

OUTPUT DEBUG CONSOLE TERMINAL (1

Vv TERMINAL
http-server-2 node index.js

I

Your logic Is like a doctor

Request methods

b~

GET - Going for a consultation to get a check up
POST - Going to get a new kidney inserted

PUT - Going to get a kidney replaced

DELETE - Going to get a kidney removed

Your logic Is like a doctor

Status codes

200 - Everything went fine

404 - Doctor is not Iin the hospital

500 - Mid surgery light went away

411 - Inputs were incorrect, wrong person came to surgery
403 => you were not allowed in the hospital

aOko0Ob~

Your logic Is like a doctor

Learn by doing, lets create an in memory hospital

You need to create 4 routes (4 things that the hospital can do)

1. GET - User can check how many kidneys they have and their health
2. POST - User can add a new Kkidney

3. PUT - User can replace a kidney, make it healthy
4. DELETE - User can remove a kidney

Your logic Is like a doctor

Learn by doing, lets create an in memory hospital

Lets start by creating an in memory array that looks something like this -

v var users = [{
name: 'John’,
v kidneys: [{
healthy: false
}, {
healthy: true
}H
}]

O 0O ~NOO UL A WN -
<

BN
()

console.log(users[0]);

Your logic Is like a doctor

JS index.js > ...
const express = require("express")
const app = express();
var users = [{
name: 'John’',
kidneys: [{
healthy: false
13l
healthy: true
}]
- - - }]
Learn by doing, lets create an in memory hospital

app.get("/", function(req, res) {
l’

})

You need to create 4 routes (4 things that the hospital can do) | app.post("/", function(req, res) {
1. GET - User can check how many kidneys they have and their health
2. POST - User can add a new kidney

3. PUT - User can replace a kidney, make it healthy app.put("/", function(req, res) {
4. DELETE - User can remove a kidney |

fel)

el

app.delete("/", function(req, res) {

})

28 app.listen(3000);

Your logic Is like a doctor

JS index.js > ...
const express = require("express")
const app = express();
var users = [{
name: 'John’',
kidneys: [{
healthy: false
13l
healthy: true
}]
- - - }]
Learn by doing, lets create an in memory hospital

app.get("/", function(req, res) {
l’

})

app.post("/", function(req, res) {

1. What should happen if they try to delete when there are no kidneys?

2. What should happen if they try to make a kidney healthy when all are e
already healthy app.put("/", function(req, res) {
})

app.delete("/", function(req, res) {

https://gist.github.com/hkirat/7b78356bd28022aecd476d29f3e6645f
28 app.listen(3000);

How to test?

POSTMAN

Home Workspaces v APINetwork v Explore (. Search Postman 3 N @

New Import 2 Impo htt| htt htty H + No Environment

http://localhost:3000/transfer &) Save v

Collections
v December 10

GeT http://localhost:3000/ RitpH/isealhost: 000/

http://localhost:3000/
Params Auth Headers (23) Body ® Pre-req. Tests Settings Cookies

(=] http://localhost:3000/

Environments Query Params
http://localhost:3006/backend-a...

) http://localhost:3000/backend-a... KEY DESCRIPTION Bulk Edit

Mock Servers
http://localhost:3000/backend-a...
http://localhost:3000/backend-a...
Monitors
http://localhost:3000/backend-a...
http://localhost:3000
http://localhost:3000 200 0K 4ms 261B Save Response v

http://localhost:3001/

History Raw Preview Visualize Text v rD Q

http://localhost:3001/conversatio...
http://localhost:3001/conversatio...
http://localhost:3000/conversati...
http://localhost:3001/conversatio...
http://localhost:3000/conversati...
http://localhost:3000/conversati...

http://localhost:3000/conversati...

