

What is Git?

Free and open source version control system

What is Version Control system?

● A system that keeps track of our files or projects.
● It allows you to revert selected files to a previous state, revert the entire

project to a previous state, compare changes over time, see who last
modified something so that we can know what might be causing a
problem, or what is the issue, who made it, and when with the details.

v1.0.0

v1.0.1

v1.0.2

v1.0.0

v1.0.1

v1.0.2

 Alice’s Code Bob’s code

v1.0.2

2 types of VCS

Centralized Distributed

Centralized version control

Helps you backup, track and synchronize files.

Eg: Subversion &
Team foundation
server

Distributed Version Control Systems

Eg: Git &
Mercurial

Why Git?

● Free
● Open source
● Scalable
● Super Fast
● Cheap branching and merging

What is GitHub?

GitHub is a web-based hosting service for git repositories.

You can use git without Github, but you cannot use GitHub without Git.

Git GitHub

Used for Version Control Used for hosting Git repositories

Installed locally on computer Cloud based

Tracks changes made to a file Provides a web interface to view file
changes

Local Repository

Every VCS tool provides a private workplace as a working copy. Developers make changes in
their private workplace and after commit, these changes become a part of the repository. Git
takes it one step further by providing them a private copy of the whole repository. Users can
perform many operations with this repository such as add file, remove file, rename file, move file,
commit changes, and many more.

Working Directory and Staging Area or Index: An intermediate area where commits can be
formatted and reviewed before completing the commit.

push: send a change to another repository (may require permission)

pull: grab a change from a repository

Basic workflow of Git.

Step 1 − You modify a file from the working
directory.

Step 2 − You add these files to the staging
area.

Step 3 − You perform commit operation that
moves the files from the staging area. After
push operation, it stores the changes
permanently to the Git repository.

Source git-scm.com

Blobs

Blob stands for Binary Large Object. Each version of a file is represented by blob. A blob holds the
file data but doesn’t contain any metadata about the file. It is a binary file, and in Git database, it is
named as SHA1 hash of that file. In Git, files are not addressed by names. Everything is
content-addressed.

Trees

Tree is an object, which represents a directory. It holds blobs as well as other sub-directories. A
tree is a binary file that stores references to blobs and trees which are also named as SHA1 hash
of the tree object.

Commits

● Commit holds the current state of the repository. A commit is also named by
SHA1 hash.

● Commit object = a node of the linked list.
● Every commit object has a pointer to the parent commit object.
● From a given commit, you can traverse back by looking at the parent pointer

to view the history of the commit.
● If a commit has multiple parent commits, then that particular commit has been

created by merging two branches.

Git commands

Clone: Bring a repository hosted somewhere like Github into a folder or your local
machine

Add: Track your files and changes in Git

Commit: Save your files in git

Push: Upload your commits to a git repo, like GitHub

Pull: Download changes from a remote repository to your local repository.

GitHub workflow Local Git Workflow

Write code

Commit code changes

Pull request

Write code

Stage code changes

Commit changes

git add

Push changes

git push

Git Branching

C1 C2 C3

Master Branch

C1 C2 C3

C2C1

MergeC4

Master Branch

Feature Branch

C1 C2 C3

C2C1

MergeC4 Merge

C1

Master Branch

Feature Branch

Hotfix Branch

Merging

Common
Ancestor

C1 C2 C3

C2C1

MergeC4

Master Branch

Feature Branch

Snapshot to
merge into

Snapshot to
merge in

What is a Git Merge Conflict?

Merge Conflicts

While starting the
merge process

During the merge
process

If there are changes in the working
directory’s stage area for the current project,

merging won’t start.

In this case, conflicts happen due to pending
changes that need to be stabilized.

When there is a conflict between the local
branch and the branch being merged.

Git resolves as much as possible, but there
are things that have to be resolved

manually in the conflicted files.

Merge Conflicts

Occasionally, this process doesn’t go smoothly.

If you changed the same part of the same file differently in the two branches
you’re merging, Git won’t be able to merge them cleanly. If your fix for feature
branch modified the same part of a file as the hotfix branch, you’ll get a merge
conflict that looks something like this:

Git hasn’t automatically created a new merge commit. It has paused the process
while you resolve the conflict. If you want to see which files are unmerged at any
point after a merge conflict, you can run git status:

Anything that has merge conflicts and hasn’t been resolved is listed as unmerged.
Git adds standard conflict-resolution markers to the files that have conflicts, so you
can open them manually and resolve those conflicts. Your file contains a section
that looks something like this:

The version in HEAD (your master branch, because that was what you had
checked out when you ran your merge command) is the top part of that block
(everything above the =======), while the version in your feature_branch looks
like everything in the bottom part. In order to resolve the conflict, you have to
either choose one side or the other or merge the contents yourself. For instance,
you might resolve this conflict by replacing the entire block with this:

git commit

Git commands to resolve conflicts

● git log --merge: produce the list of commits that are causing the
conflict.

● git diff: Identify the differences between the states repositories or files.
● git checkout: Used to undo the changes made to the file, or for

changing branches.
● git reset --mixed: Used to undo changes to the working directory and

staging area.
● git merge --abort: Helps in exiting the merge process and returning

back to the state before the merging began.
● git reset: Used at the time of merge conflict to reset the conflicted files

to their original state.

